

Maddalena Casale

Università degli Studi della Campania Vanvitelli Ematologia e Oncologia Pediatrica Direttore Prof. Silverio Perrotta

maddalena.casale@unicampania.it

Hematological Diseases (ERN EuroBloodNet)

Pontificia Università Urbaniana

Disclosures of Name Surname

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Pfizer			х			х	
Novo Nordisk					х	x	
Vertex						х	

	Advantages	Disadvantages
Preconceptual		
Testing parents (or prospective parents)		
Blood tests	Widely available on a voluntary basis; evidence of benefit in Saudi Arabia and Bahrain; reliable and able to distinguish most types of sickle cell disease, including compound heterozygotes	Quality assurance processes not routine in LMICs, with results varying from lab to lab
Conventional electrophoresis	Cheap; low maintenance equipment	Low sensitivity when compared with HPLC or capillary electrophoresis
HPLC	Sensitive, automated systems developed specifically for haemoglobinopathy screening	High cost of machines, reagents, and maintenance; service contracts not available in many countries
Capillary electrophoresis	Sensitive; separates HbE from HbA ₂	Mostly used in HICs; expensive with high maintenance costs
POCTs	Rapid, sensitive, and low cost compared with HPLC and capillary electrophoresis; in WHO Essential Diagnostics List 3	
Prenatal or antenatal		
Testing pregnant people		
Blood tests	Integral part of the UK and Cuban newborn baby and antenatal screening programme; used for guided newborn screening targeting in India and Benin	Educational and counselling programmes not well established many countries
Conventional electrophoresis	Cheap; low maintenance equipment	Low sensitivity when compared with HPLC or capillary electrophoresis
HPLC	Sensitive, automated systems developed specifically for haemoglobinopathy screening	High cost of machines, reagents, and maintenance; service contracts not available in many countries
Capillary electrophoresis	Sensitive; separates HbE from HbA,	Mostly used in HICs; expensive with high maintenance costs
POCTs	Used in the Republic of Congo, Democratic Republic of the Congo, Guinea, Nigeria, Liberia, and Kenya for primary screening	
Testing fetuses		
DNA technology	Available in HICs and India	High cost; ethical issues; might be unacceptable or prohibited law in some countries
Chorionic villus sampling (10–12 weeks of pregnancy)	Part of the newborn screening programme in Cuba	Invasive
Amniocentesis (15-20 weeks of pregnancy)	Technically easier than other fetus testing methods	Invasive
Analysis of circulating foetal DNA in mother's blood	Non-invasive; no fetal risk during sampling	Still in evaluation phase
Testing embryos		
Preimplantation genetic diagnosis with in-vitro fertilisation	Alternative to prenatal diagnosis and offer of pregnancy termination in case of an affected fetus	Very high cost; considerable physical and psychological burder for the parents
Postnatal		
Newborn screening		
Blood tests from heel-stick test	Widely implemented; extensive experience; benefit shown	
Isoelectric focusing	Sensitive and specific; mostly used in LMICs; low cost	Labour intensive; extensive expertise needed
HPLC	Sensitive and specific; mostly used in HICs	High cost; requires skilled technicians
Capillary electrophoresis	Sensitive and specific; mostly used in HICs	High cost of equipment and maintenance; requires skilled technicians
Mass Spectrometry	Used in the UK and France; high throughput	Very high cost of equipment; requires skilled technicians
POCTs	Successfully implemented in Nigeria; evidence of benefit in Haiti, Côte d'Ivoire, Ghana, and Martinique (France); easy to use, low cost, and does not require electricity	

Modalità di Screening

Piel et al, Lancet Haematol 2023

HICs=high-income countries. HPLC=high-performance liquid chromatography. LMICs=low-income and middle-income countries. POCTs=point-of-care tests.

Modello Italiano

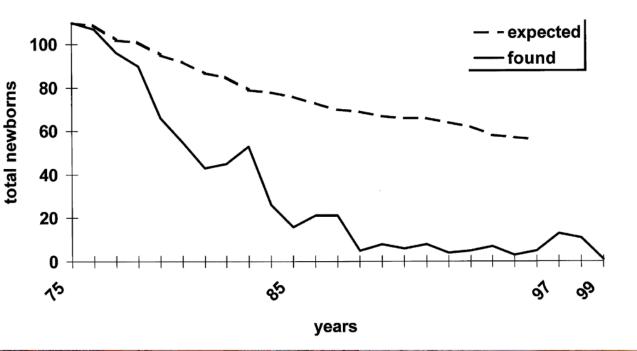
- Attività educative ed informative a scuola
- Prelievo per test a scuola
- Comunicazione dei risultati
- Test familiare
- Counselling genetico

Table 1 Prevention programme of inherited haemoglobin in Latium (Italy)

Subjects	Scholastic screening (October 1975– June 2011)	Extra-scholastic screening (January 1975– December 2011)	Total
Tested populations Non-α thalassemia carriers diagnosed	1,466,100	388,690	1,854,790
	26,786 (1.8 %)	38,457 (9.9 %)	65,243 (3.5 %)

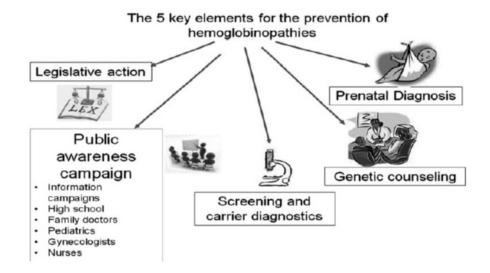
Global results in 36 years since implementation

Amato et al, J Community Genet 2014



Obstet Gynecol Clin N Am 29 (2002) 305-328 OBSTETRICS AND GYNECOLOGY CLINICS of North America

Screening for thalassemia A model of success


Antonio Cao, MD^{a,*}, Maria Cristina Rosatelli, PhD^b, Giovanni Monni, MD^c, Renzo Galanello, MD^{*}

^aDepartment of Pediatrics, Dipartimento di Scienze Biomediche e Biotecnologie, Sez. Clinica e Biologia dell'Età Evolutiva, Università degli Studi di Cagliari, Cagliari, Sardinia, Italy bDepartment of Molecular Biology, Dipartimento di Dipartimento di Scienze, Applicate ai Biosistemi, Università degli Studi di Cagliari, Sardinia, Italy capartment of Obstetrics, Ospedale Regionale per le Microcitemie, Azienda USL n. 8, Cagliari, Sardinia, Italy

Modello Italiano

Riduzione Incidenza Emoglobinopatie 85% (da 1/245 neonati a 1/2000 neonati)

A.Giambona Int J Clin Pract, October 2015, 69, 10, 1129-1138

18-3-2017

ALLEGATO 10A

PRESTAZIONI SPECIALISTICHE PER LA TUTELA DELLA MATERNITA' RESPONSABILE, ESCLUSE DALLA PARTECIPAZIONE AL COSTO IN FUNZIONE PRECONCEZIONALE

1. Prestazioni specialistiche per la donna

89.26.1	PRIMA VISITA GINECOLOGICA. Incluso: eventuale prelievo citologico, eventuali indicazioni in funzione anticoncezionale o preconcezionale. Non associabile a 89.26.3 PRIMA VISITA OSTETRICA
90.49.3	ANTICORPI ANTI ERITROCITI [Test di Coombs indiretto]
91.26.D	VIRUS ROSOLIA IgG e IgM per sospetta infezione acuta. Incluso: Test di Avidità delle IgG se IgG positive e IgM positive o dubbie
91.26.E	VIRUS ROSOLIA ANTICORPI IgG per controllo stato immunitario
90.62.2	EMOCROMO: ESAME CITOMETRICO E CONTEGGIO LEUCOCITARIO DIFFERENZIALE Hb, GR, GB, HCT, PLT, IND. DERIV. Compreso eventuale controllo microscopico
90.66.7	Hb - EMOGLOBINE. Dosaggio frazioni (HbA2, HbF, Hb Anomale)
91.38.5 91.49.2	ES. CITOLOGICO CERVICO VAGINALE [PAP test convenzionale] ⁽¹⁾ PRELIEVO DI SANGUE VENOSO

Se non effettuato nei tre anni precedenti nella fascia d'età dello screening (>25 anni)

2. Prestazioni specialistiche per l'uomo

	In caso di donna (partner) eterozigote per emoglobinopatie									
90.62.2	EMOCROMO: ESAME CITOMETRICO E CONTEGGIO									
1	LEUCOCITARIO DIFFERENZIALE Hb, GR, GB, HCT, PLT, IND.									
	DERIV. Compreso eventuale controllo microscopico									
00.667	THE THOOGRAPHIE DO NOT A CONTRACT THE THE A									
90.66.7	Hb - EMOGLOBINE. Dosaggio frazioni (HbA2, HbF, Hb Anomale).									
01 40 2	PRELIEVO DI SANGUE VENOSO									
91.49.2	FREEEVO DI SANGCE VENOSO									

......

ALLEGATO 10B

PRESTAZIONI SPECIALISTICHE PER IL CONTROLLO DELLA GRAVIDANZA FISIOLOGICA, ESCLUSE DALLA PARTECIPAZIONE AL COSTO

Supplemento ordinario n. 15 alla GAZZETTA UFFICIALE

All'inizio della gravidanza, possibilmente nel <u>PRIMO TRIMESTRE</u> (entro 13 settimane+6 gg.), e comunque al primo controllo:

89.26.3	PRIMA VISITA OSTETRICA. Incluso eventuale prelievo citologico. Non associabile a 89.26.1 PRIMA VISITA GINECOLOGICA
90.62.2	EMOCROMO: ESAME CITOMETRICO E CONTEGGIO LEUCOCITARIO DIFFERENZIALE Hb, GR, GB, HCT, PLT, IND. DERIV. Compreso eventuale controllo microscopico
90.66.7	Hb - EMOGLOBINE. Dosaggio frazioni (HbA2, HbF, Hb Anomale). Qualora non eseguito in funzione preconcezionale.
90.65.3	GRUPPO SANGUIGNO AB0 (Agglutinogeni e Agglutinine) e Rh (D) Qualora non eseguito in funzione preconcezionale
90.49.3	ANTICORPI ANTI ERITROCITI [Test di Coombs indiretto] Da ripetere a tutte le donne a 28 settimane
90.27.1	GLUCOSIO (3)
91.26.D	VIRUS ROSOLIA IgG e IgM per sospetta infezione acuta. Incluso: Test di Avidità delle IgG se IgG positive e IgM positive o dubbie Da ripetere entro la 17^ settimana in caso di negatività
91.26.E	VIRUS ROSOLIA ANTICORPI IgG per controllo stato immunitario Da ripetere entro la 17^ settimana in caso di negatività
91.09.D	TOXOPLASMA ANTICORPI IgG e IgM. Incluso Test di Avidità delle IgG se IgG positive e IgM positive o dubbie. Incluso eventuali IgA e Immunoblotting Da ripetere ogni 4-6 settimane in caso di negatività
91.10.B	TREPONEMA PALLIDUM. Sierologia della sifilide. Anticorpi EIA/CLIA e/o TPHA [TPPA] più VDRL [RPR]. Incluso eventuale titolazione. Incluso: eventuale Immunoblotting.
91.23.F	VIRUS IMMUNODEFICENZA ACQUISITA [HIV 1-2] .TEST COMBINATO ANTICORPI E ANTIGENE P24. Incluso: eventuale Immunoblotting. Non associabile a 91.13.2 Virus Anticorpi Immunoblotting (Saggio di conferma) NAS. Qualora non eseguito nei tre mesi precedenti
90.44.3	URINE ESAME COMPLETO. Incluso: sedimento urinario

Advantages Disadvantages Screening Preconceptual Testing parents (or prospective parents) Quality assurance processes not routine in LMICs, with results Blood tests Widely available on a voluntary basis; evidence of benefit in Saudi Arabia and Bahrain; reliable and able to distinguish most varying from lab to lab post-natale types of sickle cell disease, including compound heterozygotes Conventional electrophoresis Cheap; low maintenance equipment Low sensitivity when compared with HPLC or capillary electrophoresis HPLC Sensitive, automated systems developed specifically for High cost of machines, reagents, and maintenance; service haemoglobinopathy screening contracts not available in many countries Capillary electrophoresis Sensitive; separates HbE from HbA, Mostly used in HICs; expensive with high maintenance costs **POCTs** Rapid, sensitive, and low cost compared with HPLC and capillary electrophoresis; in WHO Essential Diagnostics List 3 Prenatal or antenatal Testing pregnant people Blood tests Integral part of the UK and Cuban newborn baby and antenatal Educational and counselling programmes not well established in screening programme; used for guided newborn screening catene polipeptidiche targeting in India and Benin 80 Conventional electrophoresis Cheap; low maintenance equipment Low sensitivity when compared with HPLC or capillary electrophoresis Sensitive, automated systems developed specifically for High cost of machines, reagents, and maintenance; service contracts not available in many countries haemoglobinopathy screening Mostly used in HICs; expensive with high maintenance costs Capillary electrophoresis Sensitive; separates HbE from HbA, Hb Embrionali POCTs Used in the Republic of Congo, Democratic Republic of the Congo, Guinea, Nigeria, Liberia, and Kenya for primary screening 20 HbA, Testing fetuses High cost; ethical issues; might be unacceptable or prohibited by DNA technology Available in HICs and India law in some countries mesi Chorionic villus sampling (10-12 weeks of pregnancy) Part of the newborn screening programme in Cuba Invasive 10 Amniocentesis (15-20 weeks of pregnancy) Technically easier than other fetus testing methods Invasive Feto Nascita **Embrione** Neonato Analysis of circulating foetal DNA in mother's blood Non-invasive; no fetal risk during sampling Still in evaluation phase Preimplantation genetic diagnosis with in-vitro Alternative to prenatal diagnosis and offer of pregnancy Very high cost; considerable physical and psychological burden fertilisation termination in case of an affected fetus for the parents Postnatal Newborn screening Blood tests from heel-stick test Widely implemented; extensive experience; benefit shown Isoelectric focusing Sensitive and specific; mostly used in LMICs; low cost Labour intensive; extensive expertise needed Sensitive and specific; mostly used in HICs High cost; requires skilled technicians High cost of equipment and maintenance; requires skilled Capillary electrophoresis Sensitive and specific; mostly used in HICs Very high cost of equipment; requires skilled technicians Mass Spectrometry Used in the UK and France; high throughput **POCTs** Successfully implemented in Nigeria; evidence of benefit in Haiti, Côte d'Ivoire, Ghana, and Martinique (France); easy to use, low cost, and does not require electricity HICs=high-income countries. HPLC=high-performance liquid chromatography. LMICs=low-income and middle-income countries. POCTs=point-of-care tests.

Piel et al, Lancet Haematol 2023

	Year of programme initiation	Year of full national programme coverage	Comment
Africa			
Regional or pilot programme			
Benin	1993		Pioneer projects; supported by NGOs, HIC agencies, and public- private initiatives
Ghana	1993		Pioneer projects; supported by NGOs, HIC agencies, and public- private initiatives
Cameroon, DR Congo, Gabon, Ghana, Guinea, Mali, Senegal, Tanzania, Uganda, Zambia	1990-2020		Regional projects partly supported by government funding
Burkina Faso, Kenya, Liberia, Niger, Nigeria	1990-2020		Regional projects partly supported by government funding
Europe			
Universal national programmes			
UK	2002	2014	Coupled newborn and antenatal screening: coverage >99%, survival at age 16 years 99·0% (95% CI 93·2-99·9)
Spain	2003	2015	**
Netherlands	2007	2007	
Malta	2017	2017	
Germany	2020	2020	_
Targeted national programmes			
France	1995	2000	Targets geographical ancestry of the mother; coverage > 99%, survival at age 16 years 97·1% (95% CI 95·2-98·3)
Regional or pilot programmes			
Ireland*	2003		_
Belgium†	1994		
Italy	2007		3 of 20 regions‡
Middle East			
Universal national programmes			
United Arab Emirates	2002	2005	-
Bahrain	2007	2007	**
Qatar	2007	2007	-
Regional or pilot programmes			
Oman	2005		
India	_		
Regional programmes			
6 of 31 states and Union Territories§	2010	**	-
North America			
Universal national programmes			
USA	1973	2006	Survival at age 18 years is 93.9% (95% CI 90.3–96.2)
Universal regional programmes Canada	1988-2006		8 of 13 provinces or territories¶

	Year of programme initiation	Year of full national programme coverage	Comment
(Continued from previous page)			
Latin America			
Universal national programmes			
French Guiana (France)	1995	1995	Coverage >99%
Brazil	2010	2014	Coverage 83%
Regional pilot programmes			
Colombia	2000	-	
Costa Rica	2013	-	**
Uruguay	2013	-	
West Indies			
Universal national programmes			
Cuba	1983	1983	Coupled antenatal screening and prenatal testing
French West Indies (Guadeloupe, Martinque, Saint Martin, and Saint Barthélemy)	1984	1984	Coverage > 98%
Jamaica	1995	2015	Coverage >98%
Puerto Rico and the Virgin Islands (USA)	1977	1987	
Dutch Caribbean	2015	2015	
Regional pilot programmes			
Tobago, Grenada, Saint Lucia, Saint Vincent and the Grenadines, Antigua and Barbuda, Haiti	1990-2020		

Screening Neonatali attivi nel mondo

Piel et al, Lancet Haematol 2023

Paese	Anno di inizio	Tipo	Incidenza Malattia	Incidenza Trait	
Ferrara (Ballardini et al, Blood Transfus. 2013)	2010-2012	Universale		1,2%	Sospeso per mancanza di fondi
Modena (Venturelli et al, Blood Transfus. 2014)	2011- 2013	Mirato (neonati da madre positiva allo screening in gravidanza)	9,6 % (9 neonati affetti)	27% madri testate 51% neonati	Copertura del programma nelle gravide pari al 70%
Modena (Lodi et al, Hemoglobin 2017)	2014	Universale (tutte le donne gravide)	0,4% (neonati affetti SCD)	5,8% (madri) 8,9% (neonati)	
Novara (Rolla et al, Clin Lab 2014)	2013	Mirato		6% (AS) 14% (sospetti βtrait)	337 neonati a rischio testati su 2447 nuovi nati
Friuli Venezia Giulia (Testa et al, Blood Transfus 2024)	2010-2019	Mirato (almeno un genitore proveniente da fuori regione) Universale	0,2% (SCD) 0.06% (HbCC) 1 caso HbH 2 casi TDT	4,34%	
Padova e Monza (Colombatti et al, Pediatr Blood Cancer 2019)	2016	Universale	0,07%	0,58-0,098%	
Napoli (Casale et al, Eur J Ped 2025)	2025	Universale (progetto pilota)			

Screening Neonatali in Italia

Guidance Flow Chart for using Family Origin Questionnaire (FOQ) FOQ is available from Prolog Tel: 0870 155 5455, code: ANSPFOQ07/07 The following Flow Chart is provided as guidance for midwives and other health care professionals on use of the FOQ in their Trusts (high and low prevalence) to provide antenatal care.

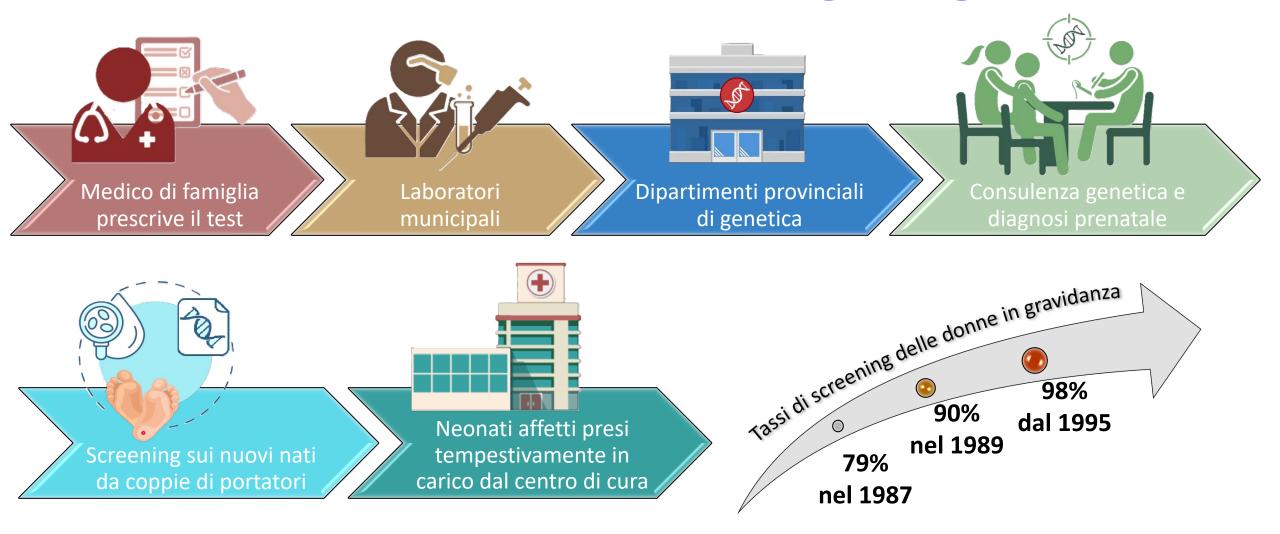
Provide all women with information about all antenatal screening programmes by 8 to 10 weeks

Midwife to Complete FOQ Questionnaire
Ask ALL women about their family origins and their baby's father's family origins

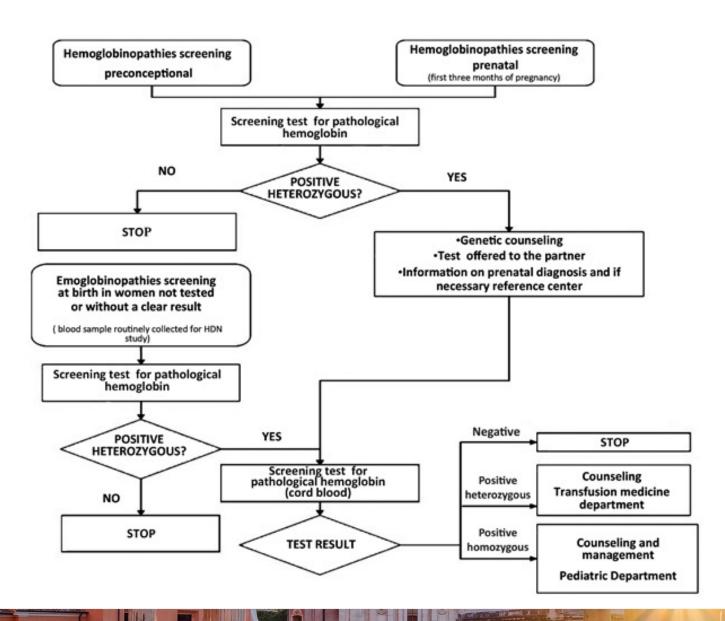
Modello Inglese Screening Integrato

In low prevalence areas, if ticks in yellow boxes for mother and/ or baby's father offer screening for other haemoglobin variants. Also, explain that women with low MCH may still get screening for haemoglobin variants. In high prevalence areas all women should be offered screening for other haemoglobin variants.

Take blood sample or give woman forms for phlebotomist


(all samples sent to lab MUST have a top copy of questionnaire attached SECURELY to antenatal booking request form)

One duplicate/ carbon copy to go in 'hand held' maternity notes Third copy to be filed'used as per local arrangements



Modello Cubano Screening Integrato

2007: Sistema digitale di registrazione dei risultati dello studio delle frazioni Hb, risparmio di oltre 500 mila dollari ogni anno.

Marcheco-Teruel B, MEDICC Rev. 2019

Modello Modenese Screening Integrato

- Utilizzare un percorso già attivo e testato
- Individuare figure specifiche all'esecuzione del percorso completo
- Adesione allo screening 70%

Lodi et al, Hemoglobin 2017

Esperienze screening antenatale

Referenza	Luogo	Tipo di screening	Risultato	Note
Al Arrayed 2005	Bahrain	Prematrimoniale volontario	Riduzione dei neonati SS dal 2% allo 0,9%	Matrimoni organizzati
Alswaidi et al. 2012	Arabia Saudita	Prematrimoniale volontario da 2004- 2009	Cancellazione del 52% dei matrimoni organizzati per «incompatibilità genetica»	Matrimoni organizzati
Memish and Saeed 2011	Arabia Saudita	Prematrimoniale volontario an ii 2005- 2006	90% delle coppie a rischio hanno deciso di sposarsi	
Stammatoyannopoulos 1974	Comunità a nord di Atene (Grecia)	Familiare	Nessuna differenza nel numero di matrimoni tra portatori screenati e non	Matrimoni organizzati
Serejeant 2017	Jamaica	Vo ontario in studenti adolescenti e sercening neonatale	Il numero di neonati affetti nati da ragazze screenate non differiva dalla stima in assenza di screening	Mancata comunicazione al parter o rifiuto del test da parte del parter
J Community Genet (2017) 8:133–139 DOI 10.1007/s12687-017-0294-8	CrossMark Meta-Analysis > P	Public Health Genomics. 2015;18(4):193-203. doi: 10.1159/000430837.	asseriza di sercerining	

Voluntary premarital screening to prevent sickle cell disease in Jamaica: does it work?

G. R. Serjeant 1,2 - B. E. Serjeant 1,2 - K. P. Mason 1,2 - F. Gibson 1 - R. Gardner 1 - L. Warren 1 - M. Jonker 3,4

Exploring the Effectiveness of Mandatory Premarital Screening and Genetic Counselling Programmes for β-Thalassaemia in the Middle East: A Scoping Review

M----- 6-66 1 Note-by U.----

SardegnaSalute

SISTEMA SANITARIO DELLA SARDEGNA

Assistenza	tenza Approfondimenti		Bandi e concorsi	Come fare per	Area operatori	Notizie	
Primi piani Cors	i e convegni	Archivio r	notizie Video				

sardegnasalute > notizie > archivio notizie > talassemia, programma di screening nelle scuole

NOTIZIE

Primi piani Corsi e convegni > Archivio notizie

Video

Talassemia, programma di screening nelle scuole

CAGLIARI, 16 LUGLIO 2007 - Con la fine dell'anno scolastico il Centro Trasfusionale e di microcitemia della Asl 2 ha concluso il Programma di Screening per la prevenzione della Beta Talassemia, rivolto agli studenti delle terze classi delle scuole medie della Gallura. Quest'anno, per la prima volta, lo Screening è stato esteso a tutto il territorio che ricade all'interno dei confini dell'Azienda Sanitaria gallurese. Sono state 19 le scuole (per un totale di 30 sedi) e 1458 gli studenti contattati: di questi ne sono stati esaminati il 58% (836 alunni), dei 622 che non si sono sottoposti allo screening buona parte dei genitori (il 42%) non ha dato il consenso, il 27% era assente, gli altri avevano già eseguito l'esame.

Potenzialità dello Screening Integrato

Solo 7% delle donne con anomalie in MCV, HbA2, assetto Hb eseguiva valutazione presso centro di riferimento

64% delle cartelle ostetriche non riportavano alcuna informazione su assetto Hb materno

Stigliano, A.A. 2021-2022; https://hdl.handle.net/20.500.14240/130244

PRIMARY CARE PAEDIATRICIANS

RECEPTION CENTRES

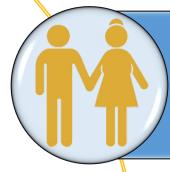


Fig. 3 Adherence to the SCD screening among primary care paediatricians and reception centres

Potenzialità dello Screening Integrato

Potenzialità dello Screening Integrato

Identifica i portatori di emoglobinopatie, informa sul rischio genetico e sul **rischio per la prole futura**, offre **libertà di scelta.**

Criticità nei contesti in cui manca una parte attiva di ricerca dei portatori e delle coppie a rischio, difficoltà di comunicazione, mancanza di follow-up, indisponibilità o rifiuto da parte di un membro della coppia. In alcuni contesti sociali/geografici potrebbe non essere efficace o attuabile.

Agisce in sinergia con lo screening prenatale per rafforzare diagnosi e prevenzione. Garantisce diagnosi prenatale, supporta la formazione e consapevolezza dei genitori, li prepara alla nascita di un bambino malato.

Gli stessi limiti del prenatale (mancanza di comunicazione, di follow-up, rifiuto informazioni)

Garantisce che **ogni bambino malato sia individuato precocemente,** permette valutazione precoce da **personale esperto** con test affidabili, indirizza correttamente al **centro di cura specializzato**, compensa i limiti dello screening prenatale/pre-concezionale.

Non identifica bambini nati **fuori dal territorio nazionale.** Presa in carico difficile in aree geografiche con **sistemi** sanitari deboli

Bain et al, Br J Haematol. 2023 Peters et al, Arch Dis Child 2010 Int. J. Neonatal Screen. 2021, 7, 15

Table 1. Country data.

Country	Approx. Population 2020 (Million) ¹	Approx. Number of Infants	Number Screening Laboratories	Average Number Samples Per Lab. ²	Interval Birth- Sampling (hrs)	Interval Sampling- Analysis (Days)	% Infants Screened	Information to Parents Available?	Consent Participation?	Consent Storage?	Length Storage (yrs)	Normal Results Reported to Parents?
Albania (no screening)	3.0	36,000	n.a. ³	n.a.	n.a.	n.a.	n.a.	n.a.	n.a	n.a	n.a	n.a.
Austria	8.8	87,000	1	87,000	36-72	1–3	>99.5	yes	no	no	10	no
Armenia	3.1	36,000	2 4	36,000	48-96	1-5	99.8	yes	yes	no	I ndef.	no
Azerbaijan	9.7	170,000	1	35,000	48-72	3–5	30	yes	no	no	n.d.	n.d.
Belarus	9.8	108,000	1	108,000	72-120	1-5	n.d.	yes	no	no	5	n.d.
Belgium	10.5	117,000	4	30,000	48-120	2	99.8	yes	no	no	5	no
Bosnia- Herzegovina	3.3	28,000	3 4	9000	48-96	1–7	96	no	no	no	10	no
Bulgaria	7.4	61,000	2 4	61,000	72-120	5–10	n.d.	no	yes/no	no	20	n.d.
Croatia	4.2	36,200	1	36,200	48-72	3–5	100	yes	no	no	5	no
Cyprus ⁵	1.1	9500	1	9500	48-168	5-10	>99.9	yes	yes	no	2	no
Czech Republic	10.6	113,000	4 4	56,000	48-72	2.5	100	yes	yes	no	5	no
Denmark	5.6	63,000	1	63,000	48-72	1-2	99.1	yes	yes	yes	indef.	online
Estonia	1.3	13,500	1	13,500	48-72	2–5	99.55	yes	yes	no	>25	no
Finland	5.5	45,000	1 4	45,000	48-120	1-5	99	yes	yes	no	varies	online
France	67	760,000	16	47,000	48-72	2-3	99.96	yes	yes ⁶	no	1	no
Georgia	3.7	48,500	1	48,500	48-72	14-15	100	yes	no	no	15	no
Germany	80	787,000	11	71,000	36-72	2-3	100	yes	yes	yes	<1	no
Greece	10.5	80,000	1	89,000	48-72	6–8	100	yes	no	no	2	no
Hungary	10	90,000	2	50,000	48-72	3-4*	99.99	yes	no	no	indef.	no
Iceland	0.35	4500	1	4500	48-72	3–5	100	yes	yes	yes	indef.	online
Ireland	4.9	59,700	1	59,700	72-120	1–2	>99.5	yes	yes	yes	10	no
Israel	9.2	194,000	1	194,000	36–72	1–3	99.8	yes	no	no	5	online
Italy	60.5	434,000	15	28,900	48-72	1–4	96.7	yes	no	no	2-10	no
Kazakhstan	18.7	402,000	21	20,000	24-72	1–2	96.5	yes	yes	no	3	no
Kosovo	1.8	25,000	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a	n.a	n.a	n.a.
Kyrgyzstan	7.0	160,000	1	32,000	48-72	3–5	30	yes	no	no	n.d.	n.d.
Latvia	1.9	20,800	1	20,000	48-72	5–7	98.5	yes	yes	no	7	online

et al, Int. J. Neonatal Screen. 2021

TABLE 3 Haemoglobinopathies likely to be detected in the neonatal screening programme.⁶

Sickle cell disease

Sickle cell anaemia (SS)

Sickle cell/β thalassaemia

Sickle cell/haemoglobin C disease

Sickle cell/haemoglobin D-Punjab

Sickle cell/haemoglobin O-Arab

Sickle cell/haemoglobin Lepore^a

Sickle cell/δβ thalassaemia

Sickle cell/haemoglobin E

Sickle cell/hereditary persistence of foetal haemoglobin

Other finically significant haemoglobinopathi s

The najority of cases of β thalassaemia major TDT

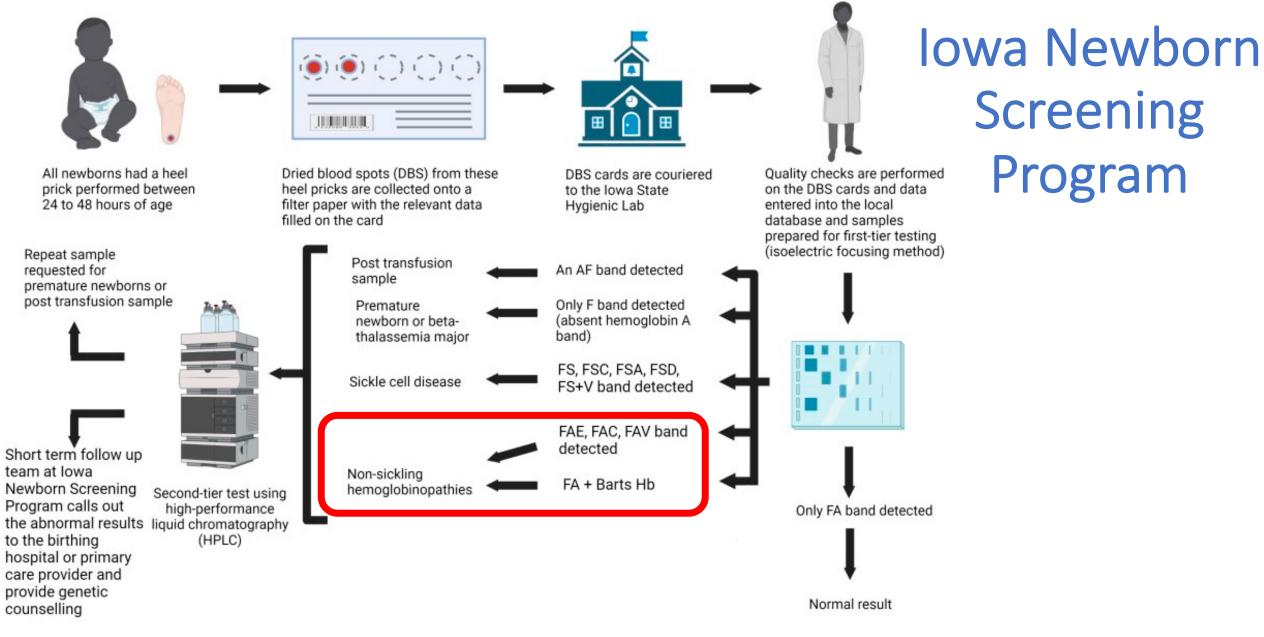
Mos cases of β thalassaemia intermedia/NTI/T

Mos cases of haemoglobin H disease^a

Haen solobin E/B thalassaemia

Abbreviations: NTDT, non-transfusion-dependent thalassaemia; TDT, transfusion-dependent thalassaemia.

^aSickle cell/haemoglobin Lepore is not specifically detected at birth (not distinguished from SS). Haemoglobin H disease is not detected by the techniques used in the majority of screening laboratories; when it is detected, reporting is not recommended.


Potenzialità dello Screening Integrato

POSSIBILITÀ DIAGNOSTICHE ALLA NASCITA PER I DIFETTI GLOBINICI PIÙ FREQUENTI

	Hb A	Hb F	Hb S	Hb C	Hb E	Hb D	Hb	Hb Lepore	Hb	Diagnosi
	%	%	%	%	%	%	Bart's %	%	Hasharon %	
Normale	23±8	71±15	-	-	-	-	-	-	-	Certa (per Hb A>23%)
β° o β+ Talassemia	13±7	84±9	-	-	-	-	-	-	-	Presuntiva (per Hb
eterozig.										A<12%)
β° o β° Talassemia	0	100	-	-	-	-	-	-	-	Certa (a)
β°/β+ ο β+/β+	< 5	> 95	-	-	-	-	-	-	-	Certa (a)
Talassemia										
α+ Talassemia	21 ± 8	> 65	-	-	-	-	< 3	-	-	Presuntiva
α° Talassemia	20 ± 7	> 65	-	-	-	-	2-6	-	-	Presuntiva
Hb H	18 ± 6	> 65	-	-	-	-	> 8	-	-	Presuntiva
Hb S eterozigote	15 ± 7	73 ± 16	10 ± 5	-	-	-	-	-	-	Certa (b)
Hb S omozigote	0	> 85	< 15	-	-	-	-	-	-	Presuntiva (b)
β°/βs	0	> 85	< 15	-	-	-	-	-	-	Presuntiva (b)
(Talassodrepanocitosi)										
β+/βs	< 5	> 82	< 12	-	-	-	-	-	-	Certa (b)
(Talassodrepanocitosi)										
Hb C eterozigote	< 20	70 ± 10	-	10 ± 5	-	-	-	-	-	Certa (c)
Hb C omozigote	0	> 80	-	< 20	-	-	-	-	-	Presuntiva
Hb E eterozigote	< 20	75 ± 10	-	-	8 ± 3	-	-	-	-	Certa (c)
Hb E omozigote	0	> 85	-	-	< 15	-	-	-	-	Presuntiva
Hb D Punjab	< 20	> 65	-	-	-	< 20	-	-	-	Presuntiva
eterozigote										
Hb Lepore eterozigote	12 ± 7	> 80	-	-	-	-	-	0	-	Presuntiva (a)
Hb Lepore / β° Tal.	0	100	-	-	-	-	-	0	-	Presuntiva (a)
Hb Lepore / β+ Tal.	< 5	> 95	-	-	-	•	-	0	-	Presuntiva (a)
δ - β Tal. eterozigote	12 ± 7	86 ± 9	-	-	-	-	-	-	-	Presuntiva (a)
δ - β Tal. omozigote	0	100	-	-	-	-	-	-	-	Certa (a)
Hb Hasharon	< 25	> 60 (d)	-	-	-	-	-	-	< 8	Presuntiva
eterozigote										
(a) Se si conosco	no i dife	etti dei ge	nitori							

- (a) Se si conoscono i difetti dei genitori.
- b) Dopo conferma del test di sickling.
- Dopo conferma mediante CE.
- (d) È compresa la quota variabile di Hb F con le catene alfa mutate

Bain et al, Br J Haematol. 2023 Mandrile et al, J Clin Med. 2022

Jilek et al, Int. J. Neonatal Screen. 2024

Program

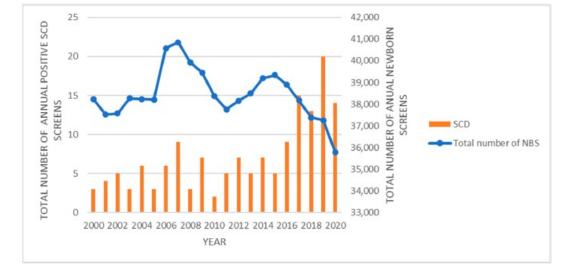


Figure 3. Total number of annual positive newborn screens for sickle cell disease (SCD) in comparison to the total number of annual newborn screens for the state of Iowa through the Iowa Newborn Screening Program from 2000 to 2020.

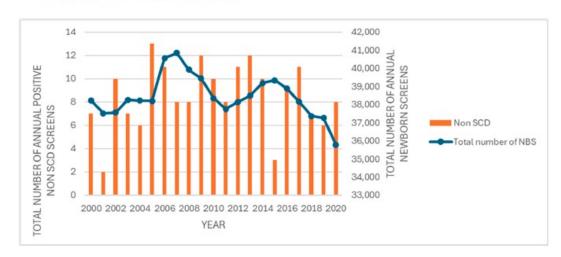
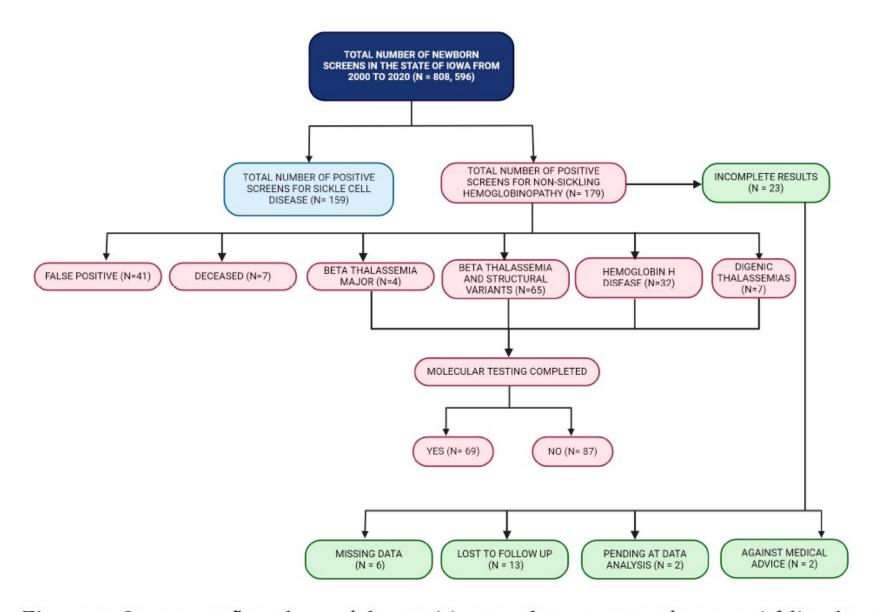



Figure 4. Total number of annual positive newborn screens for non-sickling hemoglobinopathy (Non-SCD) in comparison to the total number of annual newborn screens for the state of Iowa through the Iowa Newborn Screening Program from 2000 to 2020.

Iowa Newborn Screening Program

HbA <3%

Jilek et al, Int. J. Neonatal Screen. 2024

Iowa Newborn Screening Program

HbA <3%

Figure 5. Summary flowchart of the positive newborn screens for non-sickling hemoglobinopathies.

Jilek et al, Int. J. Neonatal Screen. 2024

Laboratori aderenti 46 (87%)

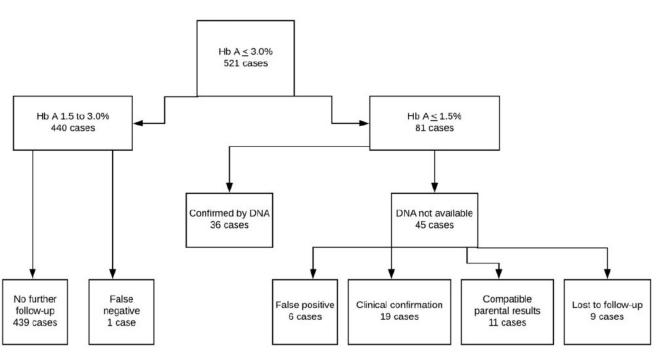
39 (85%) Beta-Thalassemia screening

SOGLIE DI RISCHIO:

- → HbF 100%
- \rightarrow HbA <1%
- \rightarrow HbA <3%

44 (95%) Alpha-Thalassemia screening

Screening Neonatale Sindromi Talassemiche in USA


TABLE 2. Reporting and recipients of alpha-thalassemia screening results — 41 newborn screening programs, United States, 2016

	Alpha-thalassemia type										
Characteristic	Alpha- thalassemia major	Hb H disease	Alpha-thalassemia trait	Silent alpha-thalassemia carrier	Other (i.e., unspecified Bart's)						
No. (%) of programs reporting results	15 (37)	20 (49)	20 (49)	7 (17)	22 (54)						
Recipient of results*											
Physician	9	14	14	5	13						
Parent	2	3	3	1	1						
NBS follow-up	11	16	16	5	16						
Other	1	2	2	1	12						
Unknown	3	3	2	1	1						
No. (%) of programs that provided percentage cutoffs of Hb Bart's for reporting out results	7 (17)	6 (15)	9 (22)	3 (7)	9 (22)						
Cutoff percentage of Hb Bart's for reporting ou	t results										
Average	64	21.5	9.1	7	15						
Minimum	25	11	2	3	3						
Maximum	100	31	20	11	25						

Abbreviation: Hb H = hemoglobin H.

Bender et al, MMWR Morb Mortal Wkly Rep 2020 Bender et al, Int. J. Neonatal Screen. 2021

^{*} Categories are not mutually exclusive; newborn screening programs report out multiple results.

Table 2. False-positive screening results.

Gestation weeks	Twin	Hb A%
23	Yes	1.4
24	Yes	1.4
25	No	1.5
32	Yes	0.4
32	Yes	0.4
32	No	1.3

Screening Neonatale Sindromi Talassemiche in UK

Mutation	Number of cases	Hb A range, %	Gamma/beta ratio
Homozygous			
Beta zero			
HBB:c.27dup G:p (Ser 10fs)	5	0.0-0.0	34.7-56.6
NG_000007.3:g.71609_72227del619	4	0.0-0.0	
HBB:c.17_18delCT	3	0.0-0.0	41.1-89.4
HBB:c.126-129delCTTT	3	0.0-0.4	
HBB:c.47G>A Trp47X	2	0.0,0.0	
Beta plus severe			
HBB:c.92+5G>C	8	0.0-1.0	16.3-19.2
Beta plus			
HBB:c79A>G [-29 (A>G)]	1	1.5	
Compound heterozygous			
Beta zero			
$HBB:c.92+5G>C/c.124_127delTTCT$	2	0.4,0.5	
HBB:c.112delT / c.25_26delAA	2	0.0,0.0	87.7
HBB:c.46delT/c.92G>C,pArg31Thr	1	0.0	
HBB:c.27_28insG/c.92 $+$ IG $>$ A	1	0.4	
HBB:c.47G>A/epsilon-gamma-delta-beta Thal	1	0.0	8.1
HBB:c.33C>A and c.51delC in cis/ $c.92+5G>C$	1	0.0	
Beta plus or silent with beta zero			
HBB:c.33C>A, p.Ala I I Ala/c.5 I del C	1	0.0	
HBB:C151C>T/c.124_127delTTCT	1	1.0	

Daniel and Henthorn, Journal of Medical Screening 2019

UN PROGETTO PROMOSSO DA

SCREENING NEONATALE

OSSERVATORIO

SCREENING

NEONATALE

NEWS

MALATTIE METABOLICHE

MALATTIE GENETICHE

REGIONI

PROGETTI PILOTA

NEWS ~ SCREENING NEONATALE APPROFONDIMENTO

Screening neonatale: l'Italia è leader in Europa

by FRANCESCO FUGGETTA on GIUGNO 8, 2022

Dal 2016 è obbligatorio ricercare nei bambini l'eventuale presenza di 49 patologie: nel mondo, solo gli Stati Uniti fanno di meglio

malattierare.gov.it

Ministero della Salute - Istituto Superiore di Sanità

MALATTIE RARE CENTRI DI DIAGNOSI E CURA ASSOCIAZIONI

NEWS

Istitutito il Gruppo di lavoro sullo screening neonatale esteso presso il Ministero della Salute

E' stato istituito in data 13 novembre, presso il Ministero della Salute - Direzione Generale della Prevenzione Sanitaria, il Gruppo di Lavoro sullo Screening Neonatale Esteso. Il Gruppo di Lavoro avrà il compito di definire il protocollo operativo per la gestione degli screening neonatali, nel quale sono indicate le modalità di presa in carico del paziente positivo allo screening neonatale e di accesso alle terapie e di procedere alla revisione periodica della lista delle patologie da ricercare attraverso lo screening neonatale.

L'istituzione del Gruppo di Lavoro arriva dopo un iter frutto del lavoro sinergico dell'Istituto Superiore di Sanità, dell'Agenzia Nazionale per i Servizi Sanitari Regionali, della Società Italiana di Neonatologia, della Società Italiana di Pediatria, della Società Italiana di Malattie Metaboliche e Screening Neonatali, della Società di Genetica Umana e di UNIAMO - Federazione Malattie Rare.

Nell'agosto 2016 è stata approvata la Legge 167 che prevede che ogni nuovo nato in Italia debba essere sottoposto gratuitamente a poche ore dalla nascita allo Screening Neonatale Esteso (SNE). Ad oggi lo SNE è in grado di individuare circa 40 tra le circa 1000 malattie metaboliche ereditarie al momento conosciute, patologie per le quali esiste una terapia. Con il c.d. emendamento Noja, lo screening sarà allargato, grazie al lavoro del tavolo appena istituito, alle malattie neuromuscolari, le immunodeficienze congenite severe e le malattie da accumulo lisosomiale.

Per le malattie comprese nel pannello di screening, la diagnosi tempestiva evita che la patologia si manifesti con sintomi anche importanti alla nascita che possono causare gravi disabilità al

Al momento le Regioni Lazio e Toscana hanno in corso una sperimentazione che ha allargato lo SNE alla SMA, individuando (e quindi salvaguardando) diversi bambini affetti.

Int. J. Neonatal Screen. 2021, 7, 15

	Endo	crine							1									1			
	Disorders				Amino Acidemias									Organic Acidemias							
	CH 1	CAH	CF	PKU	MSUD	HCY	Tyr-1	Tyr-2	ASA	Cit.1/2	ARG	MAT VIII	GA1	IVA	3МСС	PA	MMA ³	BKT	HCSD	3HMG	MCD
Albania																					
Armenia	x 2			x																	
Austria	x	×	×	x	x	x	x	x	×	X	×		×	×		x	X				
Azerbaijan	x	×		×																	
Belarus	x			x																	
Belgium	x	x	x	x	x	x	x	x					x	x		x	X				
Bosnia-Her.	x			x																	
United Kingdom	x		х	х	х	х							x	х							
Cyprus	x			x																	
Czech Rep.	x	x	x	x	x	x				x	x		x	x							
Denmark	x	x	x	x	x		x		x				x	x		x	X				x
Estonia	x			×	x	×	x	x		×	×		×	×		x	×				
Finland	x	×		x	x	x	x		x	x	×		×	x		x	x				
France	x	X	x	x																	
Georgia	x		x	x																	
Germany	х	x	х	х	х		X						x	x							
Greece	x			x																	
Hungary	x		P 1	×	x	×	x	x	×	×			×	×	x	x	x	×		x	X
Iceland	x	x		X	x	x			x	x	×		X	x	x	x	x	x	x	x	X
Ireland	x		х	х	x	x							х								
Israel	x	x		x	x	x	x	x	×	x	x	x	×	×		x	x	x	x	x	X
Italy	x	р	x	x	x	x	x	x	x	x	X		x	x	x	x	x	x	x	x	x

THE LANCET Diabetes & Endocrinology

OBIETTIVI

Malati in fase pre-sintomatica Educazione e Informazione Prevenzione Complicanze

PUNTI di FORZA

Obbligatorietà
Gratuità
Delocalizzazione sul territorio

LIMITI

Necessità del re-screening Test diagnostico più appropriato Score di rischio e storia naturale Le patologie per le quali viene espresso parere favorevole a un immediato inserimento nel panel sono:

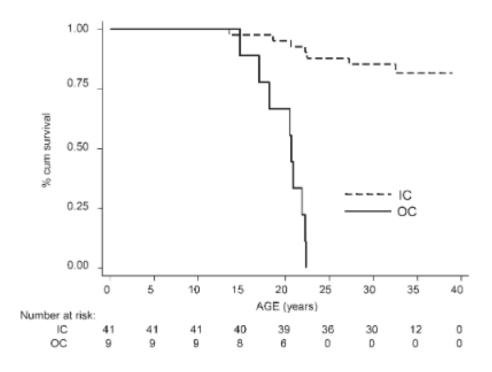
- 1. Adrenoleucodistrofia X-linked (X-ALD) 1:21.000 nati maschi.
- 2. Atrofia muscolare spinale (SMA)
- 3. Malattia di Fabry
- 4. Malattia di Gaucher
- 5. Malattia di Pompe 0,019%
- Mucopolisaccaridosi tipo I (MPS I)
- ADA-SCID
- 8. PNP-SCID
- 9. Immunodeficienze congenite rilevabili con test TREC/KREK, da rendere obbligatorie solo dopo un periodo da stabilire affinché vi sia un adeguamento e accordi tra i laboratori
- 10. Iperplasia surrenalica congenita o sindrome adrenogenitale (CAH).

I tavoli hanno inoltre espresso parere **favorevole ma condizionato** all'ottenimento di alcuni requisiti, per 8 patologie. Tra queste, alcune mancano di un test validato o a marchio CE, che ragionevolmente potrà essere disponibile in un prossimo futuro, mentre per altre condizioni mancano terapie approvate, anche queste in fase avanzata di studio, o esperienze di screening considerevoli. Per altre mancano entrambi i requisiti e sono dunque da monitorare, ma più lontane dall'obiettivo.

- Malattia di Niemann-Pick forme A e B (ASMD)
- Deficit di AADC incidenza globale sconosciuta.
- Leucodistrofia metacromatica
- 4. Mucopolisaccaridosi tipo II (MPS II)
- Mucopolisaccaridosi tipo III (MPS III)
- Mucopolisaccaridosi tipo IV (MPS IV)

Screening Neonatale Esteso

I Criteri di Wilson e Jungner OMS 1968


- La malattia costituisce un problema importante di salute pubblica (prevalenza, gravità, costi)
- 2. È disponibile un trattamento efficace
- 3. Sono disponibili strutture per la diagnosi e il trattamento
- 4. La condizione è riconoscibile in uno stadio pre-sintomatico o precoce
- Esiste un test appropriato (semplice, riproducibile, affidabile, non dannoso, a basso costo)
- 6. Il test di screening è accettabile per la popolazione
- 7. La storia naturale della malattia è conosciuta
- 8. Il protocollo di trattamento è chiaro
- 9. Il costo dello screening (conferma diagnostica e trattamento) è bilanciato dai costi complessivi della patologia
- 10. Lo screening è un processo sistematico e non una tantum

I Criteri di Wilson e Jungner Aggiornamento

misurazione della qualità della vita

genetic equality

"trialability".

Forni et al, Am J Hematol. 2009

Quaderno SNE 2023

Screening Neonatale Obbligatorio dal 1992

Screening Neonatale Esteso dal 2016

Proposte di Lavoro

Survey in ambito ginecologico e ostetrico

Sezione dedicata nelle Cartelle ostetriche

Alert in piattaforma dei MMG

Promozione dello screening post-natale